
E
le

k
tr

o
-A

u
to

m
a
ti

k

Doc ID: PG2EN
Revision: 8
Date: 06-23-2020

PS 2000 B Series
2020 TFT models

Programming Guide

Attention! This document is
only valid for the 2020 facelifted
models of PS 2000 B with color
TFT screen

Page 2EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

TABLE OF CONTENTS
1.	 PREAMBLE	 3

1.1	 Introduction... 3
1.2	 Driver installation... 3

1.2.1	 Windows... 3
1.2.2	 Linux, MacOS and others... 3

1.3	 Terms.. 4

2.	 COMMUNICATION WITH THE DEVICE IN GENERAL	 4
2.1	 Structure of the communication.. 4
2.2	 Serial communication parameters... 4
2.3	 Translating values... 4

2.3.1	 Actual values.. 4
2.3.2	 Set values.. 4

2.4	 General... 5
2.5	 Effective resolution when programming.. 5

3.	 MESSAGE FORMATS	 6
3.1	 Custom binary format.. 6

3.1.1	 Telegram structure... 6
3.1.2	 The start delimiter in detail... 7
3.1.3	 The mask byte on object 54... 7
3.1.4	 Message examples.. 7
3.1.5	 Possible problems when setting device conditions.. 8
3.1.6	 Error messages.. 8
3.1.7	 Trouble-shooting.. 9
3.1.8	 Object list... 9

3.2	 ModBus RTU... 10
3.2.1	 Preamble.. 10
3.2.2	 General information about ModBus RTU... 10
3.2.3	 About the register list... 10
3.2.4	 Message types... 11
3.2.5	 Functions.. 11
3.2.6	 Control messages (write)... 11
3.2.7	 Query message.. 12
3.2.8	 Response message (read)... 12
3.2.9	 The ModBus checksum.. 13
3.2.10	 Communication errors.. 13
3.2.11	 Examples of ModBus RTU messages... 14

3.3	 SCPI.. 16
3.3.1	 Format of set values and actual values... 16
3.3.2	 Syntax.. 16
3.3.3	 Concatenated commands.. 16
3.3.4	 Upper and lower case.. 16
3.3.5	 Long form and short form... 16
3.3.6	 Termination character... 17
3.3.7	 Communication errors.. 17
3.3.8	 Standard IEEE commands... 17
3.3.9	 Status registers.. 18
3.3.10	 Output addressing.. 19
3.3.11	 Set value commands.. 20
3.3.12	 Measuring commands.. 20
3.3.13	 Status commands.. 20
3.3.14	 Commands for protective features... 21
3.3.15	 Commands for adjustment limits.. 21
3.3.16	 Commands for the tracking mode.. 22
3.3.17	 Further commands... 22

Page 3EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

1.	 Preamble
1.1	 Introduction
This guide’s purpose is to explain the communication protocols for the 2020 redesigned generation of series PS
2000 B models. These devices support three different message formats or command syntax:
•	Custom binary EA message format (same as in the previous PS 2000 B model generation)
•	SCPI
•	ModBus RTU

The device can distinguish the three different protocols automatically upon the first byte of a message. This is
possible because of some rules:
•	The slave address in byte 0 of ModBus message must always be either 0x00 or 0x01, though it’s not used to
address the device -> when the first byte is either 0 or 1 the message is considered and processed as ModBus
RTU message

•	When using the binary protocol, the 2nd byte of the message can only be 0x00 or 0x01 in order to address the
output 1 or output 2 (for a single model it would thus always be 0x00) -> if the 2nd byte is either 0x00 or 0x01,
the message is considered and processed as custom binary message

•	When the first byte contains a value >1 and the 2nd byte as well, the message is considered and processed as
SCPI command string

•	Any other case is considered as an invalid message
Communication is solely done with the front USB as it the only digital interface. Once installed, the USB driver cre-
ates a virtual COM port (VCP) for any new unit of this device type. Using the COM port will reduce the programming
effort for the communication port itself to a minimum, because the virtual COM port doesn’t require configuration.

1.2	 Driver installation

1.2.1	 Windows
The USB driver comes on USB stick with the device. In case the stick isn’t available, you can find the driver on our
website as well. It’s compatible to all Windows versions since 7 (except for Embedded).
We recommend to install the driver before connecting the device to the PC the first time, in order to prevent Windows
from installing another driver which wouldn’t configure the device as PS 2000 in the system. This can become a
problem when starting to use LabView and our supplied VI set which requires the device to be correctly named
according to our driver.
After successful installation you can safely connect the device to the PC. In order to verify correct device installation
it’s helpful to open the Windows Device Manager (on Windows 10 you find in the context menu when right-clicking
the start menu button). Go to section “Ports” to find a

 or PS 2000 Triple (COM8), depending on the model.
Note: The COM port number 8 above is only an example. Windows assigns a new COM port for every new device
of this type that is installed in the system. The port is remembered and used again if the device is connected the
next time.
Note: In case there are multiple units connected to the PC, they will all be listed as separate devices in the device
manager.

1.2.2	 Linux, MacOS and others
We can’t offer a proprietary driver for operating systems other than Windows. There are generic drivers on at least
Linux and MacOS available. In case the automatic detection fails, the USB hardware is of type CDC (communica-
tion device class).
However, the generic driver has a downside: our LabView VI package can’t be used or at least the scan VI, which
is used to find and list our devices, because it relies on data coming from the Window registry.

Page 4EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
1.3	 Terms
Telegram or Message or Message format = Chain of hexadecimal bytes, with varying length. It’s either sent to
a device or received from it. A part of the telegram (data field) represents hexadecimal values or ASCII strings.
SCPI = Standard Commands for Programmable Instruments, an internationally standardized text/string based
command language
ModBus / ModBus RTU = binary, prolific and specified data transmission format which is based on sub formats
like RTU

2.	 Communication with the device in general
2.1	 Structure of the communication
The communication with the unit is based on these telegram types:
a) Send message: an object or command is sent which shall, for instance, set the output voltage. As long as this
action is permitted by the current state of the device, the command is accepted and executed. Depending on the
message format used in the last transmission, the device would do following:
•	when using the custom binary message format, it would send an answer in form of an error message, but with

error code 0. Otherwise, an error code other than 0 is returned.
•	when using ModBus it would return an acknowledge message (different formats, depending on the function code)
•	when using SCPI it won’t return anything

b) Query message: a query is sent to the device and an answer is expected, which would contain the requested
data. In case of a communication error the device would either return an error message (custom binary / ModBus)
or nothing (SCPI).

2.2	 Serial communication parameters
Data transfer is done via a virtual COM port (VCP), which is generated by the USB driver. Since the COM port is
virtual, the driver ignores the actual serial setting, so any setting is OK, also the default one. It means, depending
on the IDE in use, it may not even be required to configure the serial settings.

2.3	 Translating values
Two of the above listed message formats, the custom binary and ModBus, require to translate set values and
actual values as percentage values for transmission. A value of 0x6400 (custom binary) or 0xCCCC (ModBus)
corresponds to 100.00%. The different hex value for 100% with ModBus comes from the requirement of compat-
ibility to our software and other series which also use ModBus.

2.3.1	 Actual values
An actual value is queried and read from the device and will be returned as hexadecimal 16 bit value, represent-
ing a per cent value.

Real actual value = Rated value * Per cent act. value ►
Translation factors
Custom binary format: 26500 or 0x6400
ModBus: 52428 orr 0xCCCC

Translation factor

Example: The rated voltage of the device is 42 V, the percentage actual value came as 0x2454 = 9300. When
translating it from ModBus format it results in an actual value of 42 * 9300 / 25600 = 7.45 V.

2.3.2	 Set values
Set values have to be translated into 16 bit per cent values before transmission. Reading set values back from the
device requires to translate them vice versa.

Percentage set value = Translation factor * Real set value ►
Translation factors
Custom binary format: 26500 or 0x6400
ModBus: 52428 orr 0xCCCC

Rated value

Example: the set value of current shall be 13.5 A, the rated current of the device is 20 A. With the formula it results
in a per cent value of 25600 * 13.5 / 20 = 17280= 0x4380, when translating it for the custom binary message format.
After sending 0x4380 to the 20 A model, it should set a current of 13.5 A for the addressed output.

Page 5EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
2.4	 General
Basic rules:
•	Monitoring, i.e. only querying actual values and status, is always possible. The device doesn‘t require to be in

remote mode in this case
•	Setting of status and set values (controlling) requires the activation of remote control mode
•	With the triple models, outputs 1 and 2 are remotely controllable and have to be addressed separately, except

for when tracking mode is activated where it’s only possible to address output 1 which is followed by output 2

In order to start controlling a device you need to
1. always activate the remote mode first (object 54)
2. and then you can send set values or status.
Remote control should be left if not used any further. As long as it’s active, the device or the addressed output can’t
be operated manually. The mode is indicated on the front display.

2.5	 Effective resolution when programming
All values related to voltage and current, as they can be transferred to the device and which are transferred via
the power stages to the addressed DC output have the same defined programmable resolution and an effective
resolution. The same applies to the actual which are sampled from the DC output using simple measuring circuits.
“Simple” means that the device can’t be considered as and compared to a multimeter, which measures faster and
more precise.
Overview:

Message format Programmable resolution of set values Effective resolution
Custom binary format 0 - 0x6400 = 25600 25600 steps
ModBus 0 - 0xCCCC = 52428 25600 steps

SCPI
Theoretically infinite, but the number of effec-
tive decimal places is identical to the format of
the corresponding value on the display

Model depending, e. g. 5 A = 500 steps,
because a 5 A rated model would display
it as 5.00

Message format Achievable resolution of actual values
Custom binary format ≤1024
ModBus ≤1024
SCPI Model depending, e. g. 5 A = 500 steps (see above)

The effective resolution depends on the analog-digital converters used in the hardware. They determine the
achievable step width of set values on the DC output. It calculates as step width of voltage or current = rated value
÷ effective resolution. For instance, with model PS 2384-05 B the approximate step width of a voltage set value
set with ModBus could then be 84 V / 25600 = ≈ 3 mV. For the current it would be 50 A / 25600 = ≈ 0.2 mA. Actual
values have a significantly lower resolution.
However, tolerances add to the result when setting a value, shifting the actual result. The PS 2384-05 B from the
example above has a voltage tolerance of max. 0.2%, as stated in the user manual. This is up to 168 mV. When
setting, for example, 24 V the true output voltage is allowed to be within 23.83 V and 24.17 V. The actual value, as
readable from the device, already includes this tolerance (or error). If you would measure the actual output voltage
with an external multimeter and it would probably read 24.1 V and you would want to it have closer to the desired
24 V, the software could adjust the set value in approx. 3 mV steps to further narrow the actual value to the set value.

Page 6EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

3.	 Message formats
3.1	 Custom binary format

3.1.1	 Telegram structure
The telegram consists of a variable number of bytes of this structure:

Byte 0 Byte 1 Byte 2 Variable number of bytes 2 bytes
SD DN OBJ DATA CS

Byte 0: SD (start delimiter)
The start delimiter marks the beginning of the telegram and determines if the message is a query or not. Meaning
of the bits:
Bits 3-0: Number of bytes -1 in the DATA field of the telegram (bytes 3-18), which can be up to 16 Bytes when
writing or reading. The length is primarily used for query messages to define the number of bytes to return. The
maximum of 16 would then result in the nibble value 0xF in bits 3-0. When only writing, it tells the device the length
of DATA so it can determine and check the expected length of the entire message. The maximum data length of
a specific object is given in column 6 of the communication object list.
Bit 4: Direction
0= Telegram from device to control unit
1= Telegram from control unit to device

Bit 5
1= Must always be 1 for sending/querying to the device, though in answers from the device it will be 0

Bits 6+7: Transmission type
00 = Reserved
01 = Query data (PC->device)
10 = Answer to a query (device->PC)
11 = Send data (PC->device)

Byte 1: DN (device node)
Here we need to distinguish whether a Single or Triple model of PS 2000 B series is going to be controlled. This
value is used to address a specific DC output. While Single models only have one output (Output 1), there are two
outputs to address with Triple models, Output 1 (left-hand display) and Output 2 (right-hand display). Output 3 can’t
be remotely controlled. The DN is returned 1:1 in an answer message, in order to know from which output it came.
Rules:
Output 1: DN must be 0 (Single or Triple model)
Output 2: DN must be 1 (only with Triple models)
In regard to the automatic distinction between the three supported message formats, it has to be pointed out that
the byte DN must always only be 0 or 1 in order to correctly detect the message as “custom binary format”, apart
from the correctly addressing a specific output.

Byte 2: OBJ
The communication object number is given here. Refer to the communication object list for PS 2000 B series to
find the available objects, their object number and function. See section 3.1.8.

Bytes 3 - 18: DATA
The DATA field can be 0-16 bytes long, hence the length of the telegram varies. If a query is sent to the device,
the data field isn’t used and the checksum of the telegram directly follows after byte 2. Data are only transmitted
when sending something to the device or when receiving an answer from it.

Last two bytes: CS (check sum)
The check sum is always located at the end of the telegram. It’s built by the simple addition of all preceding bytes
of the telegram. It’s two bytes long. The high byte is placed before the low byte.

Page 7EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.1.2	 The start delimiter in detail
According to the telegram format (see above), the first byte of a telegram is the start delimiter, which depends on
the type and direction of the telegram. For example, the SD can be 0xF1 and looks like this in single bits:
11 11 00 01

Bits 3...0: 0001 = Two bytes are sent

Bit 4: 1 = Direction from PC

Bit 5: 1 = Always 1 when sending to the power supply)

Bits 7+6: 11 = Mode “Send data”

This SD determines that data are sent to the device. The content of the data and the object define what is sent
and what the device will do in reaction.
Alternatively to the bitwise assembly, this can be simplified by adding hex values:
SD = Message type + Cast type + Direction + Length
whereas the message type is either
0xC0		 Send data or
0x40		 Query data
0x80		 Answer from device
and the cast type is
0x20		 Broadcast
and the direction is either
0x10		 from PC to the device or
0x00		 from device to the PC
and the data length - 1 can be
0x01...0x0F	up to 16 bytes of data
By the above example, the SD of 0xF1 is built from 0xC0 + 0x20 + 0x10 + 0x01.
The SD in answers from the device will be different and can be ignored or at least used to read the data length from it.

3.1.3	 The mask byte on object 54
Object 54 requires to use a mask byte, which is sent together with the control byte. The possible mask values are
given in column 6 of the object list (see separate PDF file). The bits of the control byte have various functions, so it
has to be determined which bit is going to be changed. This is defined by the mask with a 1 for the corresponding
bit of the control byte.
Example: bit 0 of the control byte shall be changed to 0 or 1. This will result in the control byte being either 0x00
or 0x01 and the mask being 0x01. Also see the object list at object 54.

Though the mask bytes allows to change multiple bits at once, it’s strongly recommended to
only change one bit per message in order to avoid conflicts.

3.1.4	 Message examples
Note: the below listed hex values are in simplified form, without the usually leading 0x.

Example 1: The actual values shall be queried from the device. According to the object list, this can be done with
object 71. The telegram to query the actual values has to look like this, according to the above explained telegram
structure and construction of the start delimiter:
75 00 47 00 BC for a Single model or output 1 of a triple model or
75 01 47 00 BD for Output 2 of a triple model
The answer from the device could be like this (single model or output 1 of a triple model):
85 00 47 01 01 64 00 1E 00 01 50 (1

This will translate to 42 V (green value = actual voltage) and 1.8 A (blue value = actual current) for a PS 2042-
06B with 42 V rated voltage and 6 A rated current. The status is returned as 0x0101 (pink value) and translates to
“remote control on”, “DC output on” and “regulation mode CV”.

1) For the decoding of the bytes see the object list, object 71

Page 8EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
Example 2: Activate remote control. This can only be done when the addressed output and its dedicated display
isn’t menu mode or when Output 2 of a Triple model is going to be addressed, tracking mode can’t be active.
F1 00 36 10 10 01 47 for a Single model or output 1 of a triple model or
F1 01 36 10 10 01 48 for Output 2 of a triple model
A successful execution of the command is responded by either
80 00 FF 00 01 7F for a Single model or output 1 of a triple model or
80 01 FF 00 01 80 for Output 2 of a triple model, containing error code 0x00, which means “OK”.
In case the command can not be executed, the error code would change:
80 00 FF 05 01 80 returned error 0x05 (“Wrong device node”), which means it was tried to address Output 2 on
Single model.

Hex values must be transferred as binary bytes, not as ASCII string!

3.1.5	 Possible problems when setting device conditions
Object 54 is used to either activate/deactivate remote control operation or switch the addressed output of a device
on or off. The object can be used to activate both states at once, but it’s strongly not recommended to do so, be-
cause setting the output requires remote control already being active and else would generate an error message.
The best way is to activate remote control first, via the corresponding bit the control byte, and then control the
DC output by sending object 54 a second time with a different control byte and mask. When deactivating remote
control it goes vice versa.
It’s also useful to read the state of the device with object 70, in order to check if object 54 has been set correctly.

3.1.6	 Error messages
When sending values or conditions, the device will return an acknowledging message in form of an error message
using object number 0xFF and containing error code 0. This indicates that the last command was received and
executed correctly. Otherwise, if the device can’t execute the last command for some reason or the telegram was
bad, an error message containing an error code other than 0 is returned. Error code list:

Hex. Dec.
00 0 No error
03 3 Check sum incorrect
04 4 Start delimiter incorrect
05 5 Wrong address for output
07 7 Object not defined
08 8 Object length incorrect
09 9 Read/Write permissions violated, no access
0F 15 Device is in "Lock" state
30 48 Upper limit of object exceeded
31 49 Lower limit of object exceeded

Legend
Communication error
User error

Description
Error code

Example: if you try to set the output voltage with object 50 while the device isn’t in remote control, it would return
the error message 80 00 FF 09 01 88. The error code 0x09 indicates, that the device is in a state where it’s not
able to accept object 50.
Explanation of some error codes:
Code 0x7: the object number used in the telegram is unknown to the device. Note, that the object numbers are
not subsequent.
Code 0x8: the length of the data field in the telegram is defined in the object list. This error code will be returned if
a set value, which is always 2 bytes because of type „int“, should have been sent but the data field only contained
one byte. Even if the start delimiter contained the correct telegram length. This is a protection against setting
wrong values.
Code 0x9: additionally to the above example, this error code can also mean that there was an attempt to write to
an object which is, according to the object list, read only (ro).
Code 0xF: there was an attempt to switch the addressed output to remote control while the related display was
in menu mode.

Page 9EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.1.7	 Trouble-shooting
Possible problem: Multiple queries have been sent, but not all of them have been answered
Most likely cause: The queries have been sent too quickly after each other. Depending on the not exactly defined
execution time of commands, you need to include a certain latency between two transmissions. The minimum time
between two commands is recommended as at least 50 ms for a device of PS 2000 B series.

Possible problem: Set values and status are not set
Possible causes
•	The device or addressed output isn’t in remote control mode. Should result in error code 0x09.
•	A value sent to the (addressed) output is wrong (too high, too low). Then an error message would be returned.

Or the value is accepted, but can’t be transferred to the output because of the current device condition, like
when sending a voltage set value while the device is in current limitation. In this case it wouldn’t return an error.

3.1.8	 Object list
See separate PDF file named object_list_ps2000b_de_en.pdf.

Page 10EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2	 ModBus RTU

3.2.1	 Preamble
Important! Read this for further understanding:

This series has been update in 2020 to support the ModBus RTU message format for the first
time. Despite ModBus having a specification, our devices didn’t fully comply to that specification
in the past. In the beginning of 2020 all series supporting ModBus thus received an update due
to which the compliance to the specification can be switched between limited and full, whereas
“limited” represents the former way of our implementation and in order to keep a certain com-
patibility to earlier firmware releases, the limited compliance mode is the default setting after
production or after a factory reset. It means that when starting using ModBus with a PS 2000 B
device it’s required to activate the full compliance at least once. It will be stored.
This system also has been submitted to the PS 2000 B, to have it compatible to other series.
The compliance can be switched (register 10013) between “Full” and “Limited” (default). Dif-
ferences:

•	 “Full” only supports the slave ID / address 1 and returns READ COILS functions correctly
•	 “Limited” only supports slave ID / address 0, so activating mode “Full” requires to send the

message to address 0 and it would always return 16 coils to a READ COILS query

From here on it’s assumed that the device you are going to program is set to mode “Full”.

3.2.2	 General information about ModBus RTU
A message or telegram as defined by the ModBus RTU protocol consists of hexadecimal bytes, of which the first
byte, the so-called slave ID, must always be 1 because our devices don’t need an adjustable address and so it’s
defined to be 1. Reason: The first byte of a telegram is also used to detect the message format of the telegram.
Also see „3. Message formats“ about this topic.
Format and length of a telegram are defined as detailed below.

3.2.3	 About the register list
Along with this programming guide, there is a so-called register list included as PDF file. This list gives an overview
about the remote programming features that are available for a PS 2000 B device when accessing it with ModBus.
The list explains in compact format how the data in a binary ModBus message has to be interpreted or how a register
is specified. This will help the user to implement the device communication into custom software applications. Us-
ers who decide to work with SCPI command language usually don’t need this list. Later in this document, the SCPI
commands are referenced in a separate chapter. When using the custom binary format, however, there is a separate
list, the PS 2000 B object list.

3.2.3.1	 Columns “ModBus address”
This number, given in decimal and hexadecimal form, is the so-called ModBus register address or register number.
It’s used in hexadecimal form in ModBus messages.

3.2.3.2	 Columns “Function”
The heads of the 5 columns next to the ModBus address column contain the names and codes of the supported
ModBus functions. An “x” in these columns mark the assignment of a register to any of the functions. For example,
the so-called coil registers are usually writable and readable, so they’re assigned to functions “Read Coils (0x01)”
and “Write Single Coil (0x05)”.

3.2.3.3	 Column “Data type”

Data type Length
char 1 Byte Single byte, used for strings
uint(16) 2 Bytes Double byte, also called word or unsigned 16bit integer
uint(32) 4 Bytes Double word, also called long or unsigned 32bit integer
float 4 Bytes Floating point value according to IEEE745 standard

Page 11EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2.3.4	 Column “Access”
This column defines for every register whether the access is read only, write only or read/write.
R = Register is read only
W = Register is write only or wouldn’t return a reasonable value when read from
RW = Register can be read or written

It applies generally: Writing to a register which allows write) access (W, RW) is only possible
during remote control!

3.2.3.5	 Column “Number of registers”
With ModBus, a register always has a length of 2 bytes or a multiple of 2 bytes. This column tells how many 2-byte
values are used by the register. The value is always the half of the value in column “Data length in bytes”.

3.2.3.6	 Column “Data”
This column tells additional information about the data which can be written to or read from the register. Two, four
or more bytes can be interpreted in different ways, depending on data type.

3.2.4	 Message types
Basically, the message system distinguishes between query messages, control messages and response mes-
sages. Query messages will cause the device to send a response message, while control messages only cause
it to reply with a 1:1 echo, in order to confirm reception.

3.2.5	 Functions
The second byte of a message contains a ModBus function code (FC, marked in blue below), which determines
whether the message is a READ or WRITE message. It also determines, whether one or multiple registers are
accessed. The protocol as described below supports following ModBus functions :

Function Function name Description Example of use
Hex Dec Long Short
0x01 1 READ COILS RC Only allows to read 1 coil, because the coils

are not organized incrementally.
Query the input / output
condition

0x03 3 READ HOLDING
REGISTERS

RHR Used to read n subsequent registers. Results
in n*2 bytes of data in the response message.

Read the model name
string (1-40 bytes)

0x05 5 WRITE SINGLE
COIL

WSC Used to write the coil (TRUE/FALSE) of a
boolean register

Switch device to remote
control.

0x06 6 WRITE SINGLE
REGISTER

WSR Used to write one register. Set values (U, I, P etc.)

0x10 16 WRITE MULTIPLE
REGISTERS

WMR Used to write n subsequent registers. Can’t
be used to write beyond the limits of a register
block, for example when trying to write multiple
set values (U, I, P) at once.

Write multiple values at
once within a register
block or write the so-
called user text

3.2.6	 Control messages (write)
The protocol checks the message only regarding the max. length of the register. After the data part, the checksum
is expected. So in case the data part would only contain the minimum two bytes and thus the message would
fulfil the protocol requirements for the selected function code, the checksum would be expected at the position
of the 7th byte. If there were further data bytes at that position or zeros and the checksum would be at a different
position in the message, the device would return an error. Hence the device will return an error, no matter if the
telegram is too short or too long, because the checksum is wrong. For message examples see „3.2.11. Examples
of ModBus RTU messages“.

The bytes in a ModBus message are read from left to right (big endian format), except for the
16 bit ModBus RTU checksum where low byte and high byte are switched.

Page 12EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
WRITE Single Register

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data word CRC
0x01 0x06 0...65535 Value to write Checksum ModBus-CRC16 (1

WRITE Multiple Registers

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Byte 6 Bytes 7-253 Last 2 Bytes
ID FC Start reg. Number Count Data bytes CRC
0x01 0x10 0...65535 0...123 Number*2 Data Checksum ModBus-CRC16 (1

WRITE Single Coil

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7
ID FC Register Data word CRC
0x01 0x05 0...65535 0x0000 (FALSE) or 0xFF00 (TRUE) Checksum ModBus-CRC16 (1

3.2.7	 Query message
When querying something from the device, the response is expected to be immediate and will be of varying length,
but always of the same construction. For the query, the start register and the number of registers or coils to read
are required. The base of the ModBus data format is a register, a 16 bit integer value or a group of two bytes.
Thus, when querying one register with function READ HOLDING REGISTERS, the device will return two bytes
and when querying two registers it returns 4 bytes etc. With READ COILS, the response will be one byte (=1 coil)
or two bytes (=16 coils, former response in earlier firmwares).
For message examples see „3.2.11. Examples of ModBus RTU messages“.

READ HOLDING REGISTERS

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Number CRC
0x01 0x03 0...65535 Number of regs to read (1...125) Checksum ModBus-CRC16 (1

READ COILS

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Number CRC
0x01 0x01 0...65535 Must always be 1 Checksum ModBus-CRC16 (1

3.2.8	 Response message (read)
A response from the device is usually expected after a query or if something has been set and the device confirms
the execution.
Expected response for WRITE SINGLE REGISTER:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x06 0...65535 Written value echoed Checksum ModBus-CRC16 (1

Expected response for WRITE SINGLE COIL:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x05 0...65535 Written value echoed Checksum ModBus-CRC16 (1

(1 See „3.2.9. The ModBus checksum“

Page 13EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
Expected response for WRITE MULTIPLE REGISTERS:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Last 2 Bytes
ID FC Start reg. Data CRC
0x01 0x10 0...65535 Number of written registers Checksum ModBus-CRC16 (1

Expected response for READ HOLDING REGISTERS:

Byte 0 Byte 1 Byte 2 Bytes 3-253 Last 2 Bytes
ID FC Data length in bytes Data CRC
0x01 0x03 2...250 Queried registers content Checksum ModBus-CRC16 (1

Expected response for READ COILS:

Byte 0 Byte 1 Byte 2 Byte 3 Last 2 Bytes
Head FC Data length in bytes Data CRC
0x01 0x01 1 0x00 or 0x01 Checksum ModBus-CRC16 (1

Unexpected response (communication error):

Byte 0 Byte 1 Byte 2 Last 2 Bytes
Head FC CRC
0x01 0x80 + Function code Error code Checksum ModBus-CRC16 (1

3.2.9	 The ModBus checksum
The checksum at the end of ModBus RTU messages is a 16 bit checksum, but it isn’t calculated as the usual
CRC16 checksum. Furthermore, the byte order of the checksum in the message is reversed. Information about
ModBus CRC16 and source code for implementation and calculation are available on the Internet, for example here:
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf , section 2.5.1.2.

3.2.10	 Communication errors
Communication errors are only related to digital communication with the device. Other alarms or errors of any kind
which can be generated and indicated by the device must not be mixed up with these.
The device will return unexpected error messages in case the previously sent message is in wrong format or if the
function can not be executed by some reason. For example, when trying to write a set value with WRITE SINGLE
REGISTER while the device isn’t in remote control. Then the message won’t be accepted and the device will return
an error message instead of a confirmation message. The message format itself can be wrong if the checksum is
bad or if you try to read a bit with function READ HOLDING REGISTERS instead of READ COILS.
In case of an error, the response message contains the original function code added to 0x80, in order to identify
the response as error message.
Overview of function codes in error messages:

FC error Belongs to
0x81 READ COILS
0x83 READ HOLDING REGISTERS
0x85 WRITE SINGLE COIL
0x86 WRITE SINGLE REGISTER
0x90 WRITE MULTIPLE REGISTERS

Overview of the communication error codes which can be returned by the device:

Code Error Explanation
0x01 1 Wrong function code The function code in the 2nd byte of the ModBus message isn't sup-

ported. See „3.2.5. Functions“ for supported codes. The error also
occurs when trying to read or write a register with a function code for
which the register isn't defined.

(1 See „3.2.9. The ModBus checksum“

Page 14EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Code Error Explanation
0x02 2 Invalid address The register address you were trying to access with read or write isn't

defined for your device. Every device series may have a different num-
ber of registers. Refer to the separate ModBus register list of the series
your device belongs to.

0x03 3 Wrong data or data length The length of data in the message is wrong or the data itself. For ex-
ample, a set value always requires two bytes of data. If the data part
of the message would be one byte only or three bytes, then the data
length would be wrong. Otherwise, when sending a set value of, for
example, 0xE000 to a register for which the maximum value is defined
as 0xCCCC, this would be wrong data.

0x04 4 Execution Command could not be executed, depends on the situation
0x05 5 CRC The CRC16 checksum at the end of the ModBus RTU message is wrong

or has been transmitted in wrong byte order (high byte first instead of
low byte)

0x07 7 Access denied Access to a certain register isn't allowed or read only while trying to
write, or vice versa. The error also occurs when trying to write to a writ-
able address while the device isn't in remote control or in remote control
from a different interface

0x17 23 Device in local Indicates, that write access to the device is blocked by he "local" condi-
tion, so only read access is possible. "Local" means that remote control
isn't allowed.

An example: You attempted to switch the device to remote control in order to control it from PC, but instead of
an echo of your message it returns something like this: 01 85 07 03 52. This is an error message. The position of
the function code contains the value 0x85. According to the first table above, this is related to the function WRITE
SINGLE COIL. The error code in the message is 0x07 which means, according to the second table above, the
device has denied the access. This can have different reasons, for example that the device is already in remote
control via a different interface.

3.2.11	 Examples of ModBus RTU messages
3.2.11.1	 Writing a set value

Set values are adjustable control value for the regulation of the physical values current and
voltage. The can only be written to a device, if it has been switched to remote control before.

Example: You want to set the current to 50%. According to the register lists, the „Set current value” is at address
501 (0x1F5) and assigned function is WRITE SINGLE REGISTER. Expecting the device to already be in remote
control mode, the message to build then has to be like this:

Message
to send:

ID FC Start Data CRC
► Expected

response:
ID FC Start Data CRC

0x01 0x06 0x01F5 0x6666 0x338E 0x01 0x06 0x01F5 0x6666 0x338E

In this case, the device is expected to return an echo of your message, indicating successful execution of the
command. The display of the device should now show 50% of what’s the maximum current of your device. For
a power supply or electronic load with 10 A nominal current it should show 5.00 A or for a model with 5 A current
rating it should show 85.00 A.

3.2.11.2	 Query all actual values at once
The device holds three readable actual values of voltage, current and power. These actual values can be queried
separately or all at once. The advantage of a combined query is, that you gain a snapshot of the most recent actual
values of the DC input or output. When querying separately, values may have changed already when sending the
next query.
According to the register list, the actual values start from register 507. Three registers shall be read:

Message
to send:

ID FC Start Data CRC
►

0x01 0x03 0x01FB 0x0003 0x75C6

Possible
response:

Head FC Len Data CRC
0x01 0x03 0x06 0x2620 0x0C9B 0x091B 0x9350

Page 15EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.2.11.3	 Read the nominal voltage of a device
The nominal or rated voltage, like the other nominal values of current or power, is an important value to read from
a device. They’re all referenced for translating set values and actual values. It’s recommended to read them from
the device right after opening the digital communication line, unless the software shall not be universal.
According to the register list, the nominal voltage is a 4-byte float value in register 121.

Query
message:

ID FC Start No. CRC
► Possible

response:
ID FC Len Data CRC

0x01 0x03 0x0079 0x0002 0x15D2 0x01 0x03 0x04 0x42A00000 0xEE69

Also see 3.2.8. The response contains a float value according to IEEE754 format, which translates to 80.0.

3.2.11.4	 Read device status
All device report their device status in register 505.

Query
message:

ID FC Start No. CRC
► Possible

response:
ID FC Len Data CRC

0x01 0x03 0x01F9 0x0002 0x15C6 0x01 0x03 0x04 0x00000483 0xB952

Also see 3.2.8. The response contains the value 0x483 which states that the device is in remote control via the
USB port, that the DC output is switched on and that CC (constant current) mode is active.

3.2.11.5	 Switch to remote control or back to manual control
Before you can control a device from remote, it’s required to switch it to remote control. This is done by sending
a certain command.

The device will never switch to remote control automatically and can not be remote controlled
with being in this condition. Reading from all readable registers is always possible.

The device will never exit remote control automatically, unless it's switched off or the AC sup-
ply is otherwise interrupted. Remote control can be left by a certain command. It then switches
back to manual control.

Switching to remote control may be inhibited by at least one circumstance and is usually indicated by an error
message:
•	Condition „Lock“ is active (check the display on the front of your device or read the device status), which can

mean that the display belonging to the addressed output is currently in menu mode

►► How to switch a device to remote control:
1.	 Create and send a message according to the description above, for example 01 05 01 92 FF 00 2C 2B for

output 1.
2.	 Once the switchover to remote control has been successful, the device will usually indicate the new condi-

tion in the display, as well as it echoes the message as a confirmation.
In case switching to remote control would be denied by the device, because option “Allow remote control = No” is
set (example from ELR 9000 series, other series may differ), then the device will return an error message like 01
85 17 02 9E. According to ModBus specification, this is error 0x85 with error code 0x17.
Leaving remote control can be done in two ways: using the dedicated command or by switching the device to “Lo-
cal” condition. We will consider the first option, because this is about programming.

►► How to exit remote control:
1.	 Create and send a message according to the description above, for example 01 05 01 92 00 00 6D DB for

output 1.

Page 16EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3	 SCPI
SCPI is an international standard for a clear text based command language. Details about the standard itself can
be found on the internet.

3.3.1	 Format of set values and actual values
In the SCPI command language real values are used, with or without unit. It means, if you wanted to set a current
of 17.5 A you would use the simple command CURR˽17.5 or, with unit, CURR˽17.5A. Below you will find more
detailed information about the available commands and their syntax. The space, as required to be put between
the command and a parameter is below replaced by symbol “˽“.

3.3.2	 Syntax
Specification according to „1999 SCPI Command reference”. Following syntax formats can occur in commands
and/or responses:

Values This numeric value corresponds to the value in the display of the device and depends on the
nominal values of the device. Rules:
- The value must be sent after the command and separated by a space
- Instead of a numeric value you can also use:
MIN corresponds to the minimum value of the parameter
MAX corresponds to the maximum value of the parameter:

MAX for a set value like U or I = adjustment limit (e. g. U-max)
MAX for a protection (OVP, OCP) = 110% of the rated value

<NR1> Numeric values without decimal place
<NR2> Numeric values with decimal place (floating point), includes NR1
<NRf> <NR1> or <NR2> or <NR3>
Unit V (Volt), A (Ampere), W (Watt)
<CHAR> 0..255: Decimal value
<+INT> 0..32768: Positive integer value (output from device)
<B0> 1 or ON: Function is/will be activated

0 or OFF: Function is/will be deactivated
<B1> NONE: manual operation active, switching to remote control possible

REMote: device is in remote control
<ERR> Error with number and description
<SRD> String data, various formats
; The semicolon is used separate multiple commands within one message
: The colon separates the SCPI keywords (main system, subsystems)
[] Lowercase letters and the content of square brackets are optional
? The question mark identifies a message as query. A query can be combined with a control mes-

sage (command concatenation). Note, that it's required to wait for the response of the query
before the next control message can be sent.

-> Response from device

3.3.3	 Concatenated commands
It’s possible to couple, i.e. concatenate up to 5 commands in one message. The commands must then be sepa-
rated by a semicolon (;). Example:
VOLT 20;CURR 10;MEAS:ARR?
The command in the string are processed from left to right, so the order of commands is important to achieve cor-
rect results. When querying multiple values or parameters at once, the returned string is also in coupled format,
with the queried returns separated by semicolons.

3.3.4	 Upper and lower case
SCPI uses upper case commands by default, though the device also accept lower case form.

3.3.5	 Long form and short form
SCPI commands have a long form and a short form. The short form (eg. SOUR) and the long form (eg. SOURCE)

Page 17EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
can be used arbitrarily. To distinguish both forms, the commands as described in the following sections are written
partly in upper case (indicates short form), partly in lower case letters (indicates the additional part of the long form).

3.3.6	 Termination character
Some interfaces require to attach a termination character to the message, while others don’t, such as USB. There
the termination character is optional and used in order to maintain compatibility between several different interfaces
in control softwares which use SCPI.
Supported termination character(s): 0xA (LF, line feed)

3.3.7	 Communication errors
Errors in terms of SCPI are only communication errors. According to the standard, devices using SCPI don’t return
errors immediately. They have to be queried from the device. The query can occur directly with the error command
(see 3.3.17) or by first reading the signal bit “err” from the Status Byte register (see „3.3.9. Status registers“).
The error format is defined by the standard and is made of a string containing a number (the actual error code)
and an explanatory text. Following errors strings can be generated by the device:

Error code / error text Description
0,”No error” No error
-100,”Command error” Command unknown or incomplete
-102,”Syntax error” Command syntax wrong -> example: SYST:LOKC (partially correct)
-108,”Parameter not allowed” A command was sent with a parameter though the command doesn’t use pa-

rameters
-200,”Execution error” Command could not be executed
-220,”Parameter error” Wrong parameter used
-221,”Settings conflict” Command could not be executed because of the condition of the device (being

in MENU etc.)
-222,”Data out of range” Parameter could not be set because it exceeded a limit
-223,”Too much data” Too many parameters per command or too many commands at once
-224,”Illegal parameter value” A parameter not specified for the command has been sent
-225,”Out of memory” The expected answer could not be sent because it would exceed the internal

buffer (can only occur with 5x *IDN? in one query message)

3.3.8	 Standard IEEE commands
In relation to the old interface standards GPIB and IEEE 488, some of the standard commands have been imple-
mented. They are supported in all devices which feature SCPI command language.

3.3.8.1	 *CLS
Clears the error queue and the status byte (STB).

3.3.8.2	 *IDN?
Returns the device identification string, which contains following information, separated by commas:
1. Manufacturer
2. Model name
3. Serial number
4. Firmware version(s) (in case there are several, these are separated by a space)
5. User text (arbitrary user-definable text, as definable with SYST:CONFIG:USER:TEXT)

3.3.8.3	 *RST
When sent, this will set the device to a defined state, except remote control is denied by the device:
1. Switch to remote control (same as SYST:LOCK 1)
2. Set DC input/output to off
3. Clear alarm buffer
4. Clear status registers to default condition (QUEStionable Event, OPERation Event, STB)

3.3.8.4	 *STB?
Reads the STatus Byte register. The signal run of the various device conditions and events is illustrated in the
register model below. The STB bits in particular:
Bit 2:	 err, Error Queue --> one or several error in the error buffer. By reading the error buffer or sending *CLS it’s

Page 18EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
flushed and the bit err is reset

Bit 3:	 ques, Questionable Status Register is active (one or several events have occurred)
Bit 5:	 esr, the Event Status Register (ESR) is active
Bit 6:	 not used
Bit 7:	 oper, Operation Status Register is active (one or several events have occurred)

3.3.9	 Status registers
Not all device conditions and alarms can be read with dedicated SCPI commands. As an alternative, the remaining
device-related information are grouped in status registers. Using regular polling, the status byte (STB) can be a
starting point for reading the device status. It tells what status register has recorded at least one event. Apart from
that, the other status registers could also be polled directly. The difference then would be, that the user would have
to find out which bits in the register have changed, by comparing the most recent value with an older value. The
bits in the status byte register will do that job for you. If they remain 0, nothing has happened.
Once a bit in the STB signalizes, that there was an event recorded in QUES or OPER register, you could read the
corresponding event register of OPER and QUES, in order to find out which bits have changed in the COND register.
Register model:

Questionable Status
QUES

err

oper

ques

STATUS
STB

0
0

0/1
0/1
0

0/1
0

0/1

0

1

7

6

5

4

3

2

Error 1
...

Error 5

Error Queue

<>0

OR

0

1

7

6

5

4

3

2

8

9

10

11

12

OR

Operation Status
OPER

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0

1

7

6

5

4

3

2

8

9

10

11

OVP (Output 1)
OCP (Output 1)
OPP (Output 1)

OT (Output 1)
OVP (Output 2)
OCP (Output 2)
OPP (Output 2)

OT (Output 2)
CV (Output 1)
CC (Output 1)
CV (Output 2)
CC (Output 2)

Remote (Output 1)

Output on (Output 1)
Tracking (only Triple)

Remote (Output 2)
Output on (Output 2)

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

CONDITION
U = User defineable
D = Is 1 by default

ENABLE EVENT ENABLE

0
0
0
0
0
0
0
0

0/1
0/1
0/1
0/1

0
0
0
0
0
0
0
0

U/D
U/D
U/D
U/D

EVENT

STAT:QUES:COND? STAT:QUES:EVEN?
STAT:QUES:ENAB <n>
STAT:QUES:ENAB?

CONDITION

STAT:OPER:COND?
STAT:OPER:ENAB <n>
STAT:OPER:ENAB?

STAT:OPER:EVEN?

*STB?

U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D

0
0

U/D
U/D
U/D

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0
0

0/1
0/1
0/1

13 0/1 U/D 0/1
14 0/1 U/D 0/1

0/1 U/D 0/1 12

OR

U/D
0

U/D
U/D
U/D
U/D

0
0

esr

Event Status
ESR

0

1

7

6

5

4

3

2

OPC

QYE
DDE
EXE

CME

OPC = OPeration Complete bit
EXE= EXecution Error
QYE= QuerY Error
CME= CoMmand Errors
DDE= Device Depend Error

*ESE
*ESE?

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

*ESR?

Events recorded in the event registers STAT:QUES:EVENT and STAT:OPER:EVENT only record
PTRs (positive transition), i. e. the changeover from 0 to 1.

Device alarms like OVP are signaled in the subregisters CONDITION and EVENT. The have
to be cleared separately by using either SYST:ERR? or SYST:ERR:ALL?, which is considered
as alarm acknowledgement and will clear the corresponding bit in CONDITION, but only if the
alarm condition isn't present anymore.

Command Description
STATus:QUEStionable?
STATus:QUEStionable:CONDition?

Reads the inputs of the Questionable Status register and returns a
value representing the bit signals on CONDITION.

STATus:QUEStionable:EVENt? Reads the Event sub register of the Questionable Status register
and returns a value representing the bit status.

Page 19EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Command Description
STATus:QUEStionable:ENABle˽<NR1>
STATus:QUEStionable:ENABle?

Sets a filter/mask for CONDITION before it’s passed on to the Event
sub register of the Questionable Status register or reads the current
mask. This filter can be used to suppress events of particular sig-
nals. By default, all bits are enabled for which a signal is given (see
register scheme). The value NR1 must not be higher than the sum
of all active signal bits.

STATus:OPERation?
STATus:OPERation:CONDition?

Reads the inputs of the Operation Status register and returns a value
representing the bit signals on CONDITION.

STATus:OPERation:EVENt? Reads the Event subregister of the Operation Status register and
returns a value representing the bit status.

STATus:OPERation:ENABle˽<NR1>
STATus:OPERation:ENABle?

Sets a filter/mask for CONDITION before it’s passed on to the Event
sub register of the Operation Status register or reads the current
mask. This filter can be used to suppress events of particular sig-
nals. By default, all bits are enabled for which a signal is given (see
register scheme). The value NR1 must not be higher than the sum
of all active signal bits.

3.3.10	 Output addressing
The so-called Single models only have one output, so addressing isn’t required there. The Triple models, however,
have to separately accessible and controllable outputs, so addressing becomes necessary. With SCPI this is done
with a suffix added to the actual command for either set or query commands. Following rules apply:
•	The suffix @1 is dedicated to Output 1 (featured with Single and Triple models)
•	The suffix @2 is dedicated to Output 2 (only featured with Triple models)
•	Using @1 with a Single model isn’t required, but supported
•	With Triple models it’s possible to omit the suffix when addressing Output 1. Without any suffix the command

would always directed to Output 1
•	With Triple models it’s possible to address both outputs at once, to achieve a synchronous setting of values or
query of actual values

Format of output addressing for set commands using an example:
CURR 12,˽(@1,2) addresses outputs 1 and 2 of a Triple model and sets 12 A. This command wouldn’t be executed
with a Single model and cause an error, because a Single model has no Output 2 to address. The command and
the space after the command are required. Alternative forms: CURR 12,˽(@1-2) or CURR 12,˽(@1:2)

Format of output addressing for query commands using an example:
MEAS:ARR?˽(@2) addresses Output 2 of a Triple model to query the actual values. The space after the actual
command, which ends with the question mark, is mandatory. Extended to query both outputs the command would
be MEAS:ARR?˽(@1,2) and would return the actual values of both outputs at once as comma separated grouped
string, such as 19.80 V, 3.25 A, 64.4 W,0.00 V, 0.00 A, 0.0 W in which the first group belongs to Output 1 etc. The
values indicate that output 2 is either set to 0 V or switched off.

Page 20EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3.11	 Set value commands

All values which have dedicated commands are always by adjustment limits, as definable in
the setup menu or by additional commands in remote control.

Also in remote control it applies that setting a voltage or current set value will impact the other
one so the maximum power won’t be exceeded. If you wanted, for instance, to define the current
at the desired level as given by the CURR command, you would have to set the voltage first. The
resulting opposite set value can only be determined by reading it back with CURR? or VOLT?.

Command Description
[SOURce:]VOLTage˽<NRf>[Unit]
[SOURce:]VOLTage?

Writes or reads the voltage set value. The unit is optional when writ-
ing. When querying the value it always comes with unit. Examples:
VOLT˽10 -> absolute short form, set 10 V
SOURCE:VOLTAGE˽5.35V -> absolute long form, sets 5.35 V

[SOURce:]CURRent˽<NRf>[Unit]
[SOURce:]CURRent?

Writes or reads the set value of current. The unit is optional when
writing. When querying the value it always comes with unit. Examples:
CURR˽8 -> absolute short form, set 8 A
SOURCE:CURRENT˽18.7A -> absolute long form, sets 18.7 A

3.3.12	 Measuring commands
Measuring commands return the last actual values which have been acquired by the device by either measurement
(U, I) or calculation (P). These represent the last situation on the (addressed) DC output. Actual values are acquired
asynchronously to the measuring commands. It means, the values are not measured in the moment of query.
Actual values are not necessarily identical to the corresponding set values. The device acquires the actual values
periodically.

Command Description
MEASure:[SCALar:]VOLTage[:DC]? Reads the last acquired actual value of DC output voltage, which is

immediately returned. Example: 3.45V
MEASure:[SCALar:]CURRent[:DC]? Reads the last acquired actual value of DC output current, which is

immediately returned. Example: 10.12A
MEASure:[SCALar:]POWer[:DC]? Reads the last acquired actual value of DC output power, which is

immediately returned. Example: 34.9W
MEASure:[SCALar:]ARRay? Reads all three actual values of the DC output and returns them in a

combined form in the order U, I, P. Example: 3.45V, 10.12A, 34.9W

3.3.13	 Status commands
Status commands are used to alter the status of the device in terms of activating remote control or switching the
DC output, or to query the current status.

Command Description
SYSTem:LOCK˽<B0> Activates remote control with ON, if permissible for the current

situation of the device, or leaves it with OFF. The state of remote
control can be queried anytime, before or after this command, with
SYST:LOCK:OWN?

SYSTem:LOCK:OWNer? Queries the state of remote control. Following possible returns:
REMOTE = Remote control is active for (addressed) output
NONE = Remote control isn’t active for (addressed) output

OUTPut˽<B0>
OUTPut?

Switches the (addressed) DC output ON, if the (addressed) output is
already in remote control, or switches it OFF. The query form would
return the actual output status, same as it can be queried via bit 11
and 14 or the Questionable Status register.

SYSTem:ERRor?
SYSTem:ERRor:NEXT?

Queries the last error from the error queue. This would then be de-
leted from the queue so that possible further errors will shift to the top.
Repeating the command would query all errors in the queue one by
one until the buffer is empty. Return example: -223,“Too much data“

Page 21EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI

Command Description
SYSTem:ERRor:ALL? Queries all error which are currently in the queue and returns them in

a combined string in which the last error comes first. Return example:
-221,“Settings conflict;@1“, -100,“Command error“, -223,“Too
much data“
The use of @1 in the first error points to a conflict which occurred
when trying to set something for Output 1 while it wasn’t in remote
control

3.3.14	 Commands for protective features
The devices of series PS 2000 B feature a set of device alarms with adjustable thresholds (OVP, OCP) which
serve to protect connected loads. The same thresholds can also be manually adjusted on the control (HMI) of the
devices. Other alarms like OT have no adjustable parameter.

Command Description
[SOURce:]VOLTage:PROTection[:LEVel]˽<NRf>[Unit] Defines the so-called OVP threshold for the (ad-

dressed) output. Example:
VOLT:PROT 46 -> absolute short form, set the
threshold to 46 V, which also suits for a 42 V model.

[SOURce:]CURRent:PROTection[:LEVel]˽<NRf>[Unit] Defines the so-called OCP threshold for the (ad-
dressed) output. Example:
CURR:PROT 11 -> absolute short form, set the
threshold to 11 A, which would only suit for models
rated 10 A or higher.

3.3.15	 Commands for adjustment limits
Adjustment limits are additional, globally effective adjustable limits for the set values U and I. The purpose is to
narrow the default 0...100% adjustment range and to prevent, for example, to accidently set a too high voltage for
the load. There is also the overvoltage protection (OVP), but it’s generally better to prevent irregular set values in
the first place.
In case a set value is sent to the device that would exceed an adjustment limit, the device will ignore the value and
put an error into the error queue. At the same time it’s impossible to set the adjustment limit lower than the related
set value. These commands are connected to the “Limits” settings as you can adjust them in the setup menu of
the device. Also refer to the device manuals for details.

Command Description
[SOURce:]VOLTage:LIMit:HIGH[?]˽<NRf>[Unit] Defines the upper limit of the voltage set value adjust-

ment range. This is only executed if the limit value
is equal to or higher than the set value. Example:
VOLT:LIM:HIGH 30 -> absolute short form, sets the
adjustment limit to 30 V, but only if the actual set
value is 30 V or lower. This could be verified before
with the VOLT? command.

[SOURce:]CURRent:LIMit:HIGH[?]˽<NRf>[Unit] Defines the upper limit of the adjustment range for
the set value of current. This is only executed if the
limit value is equal to or higher than the set value.
Example:
CURR:LIM:HIGH 6 -> absolute short form, sets the
adjustment limit to 6 A, but only if the set value is
6 A or lower. This could be verified before with the
CURR? command.

Page 22EA Elektro-Automatik GmbH
Helmholtzstr. 31-37• 41747 Viersen
Germany

Fon: +49 2162 / 3785-0
Fax: +49 2162 / 16230

www.elektroautomatik.de
ea1974@elektroautomatik.de

Binary / ModBus / SCPI
3.3.16	 Commands for the tracking mode
The so-called tracking mode is only available with the Triple models. When activated, it couples the two address-
able outputs so that Output 2 follows Output 1 in all regards of set values, limits, protection and DC on/off. Once
tracking has been activated, Output 2 isn’t available anymore for separate addressing. The status of tracking mode
is indicated in the displays by “Tracking”. This mode is furthermore stored permanently.

Command Description
SYSTem:CONFig:TRACking˽{ON | OFF}
SYSTem:CONFig:TRACking?

Activates tracking mode with ON or deactivates it with OFF or reads
the current status. This status is the actual mode status as also
signaled in the Questionable status register.

3.3.17	 Further commands
Here are commands listed that can be used to query other information from the device.

Command Description
SYSTem:NOMinal:VOLTage? Reads the rated output voltage of device, respectively of the ad-

dressed output
SYSTem:NOMinal:CURRent? Reads the rated output current of the addressed output

SYSTem:NOMinal:POWer? Reads the rated output power of the addressed output

SYSTem:DEVice:CLASs? Reads the device class number, which can be used to distinguish
between different series and sub series. For Single models of this
series this number would always be 16, while it’s 24 for the Triple
models.

EA Elektro-Automatik GmbH & Co. KG
Development - Production - Sales

Helmholtzstraße 31-33
41747 Viersen

Germany

Fon: 02162 / 37 85-0
Fax: 02162 / 16 230

Mail: ea1974@elektroautomatik.de
Web: www.elektroautomatik.de

	1.	Preamble
	1.1	Introduction
	1.2	Driver installation
	1.2.1	Windows
	1.2.2	Linux, MacOS and others

	1.3	Terms

	2.	Communication with the device in general
	2.1	Structure of the communication
	2.2	Serial communication parameters
	2.3	Translating values
	2.3.1	Actual values
	2.3.2	Set values

	2.4	General
	2.5	Effective resolution when programming

	3.	Message formats
	3.1	Custom binary format
	3.1.1	Telegram structure
	3.1.2	The start delimiter in detail
	3.1.3	The mask byte on object 54
	3.1.4	Message examples
	3.1.5	Possible problems when setting device conditions
	3.1.6	Error messages
	3.1.7	Trouble-shooting
	3.1.8	Object list

	3.2	ModBus RTU
	3.2.1	Preamble
	3.2.2	General information about ModBus RTU
	3.2.3	About the register list
	3.2.4	Message types
	3.2.5	Functions
	3.2.6	Control messages (write)
	3.2.7	Query message
	3.2.8	Response message (read)
	3.2.9	The ModBus checksum
	3.2.10	Communication errors
	3.2.11	Examples of ModBus RTU messages

	3.3	SCPI
	3.3.1	Format of set values and actual values
	3.3.2	Syntax
	3.3.3	Concatenated commands
	3.3.4	Upper and lower case
	3.3.5	Long form and short form
	3.3.6	Termination character
	3.3.7	Communication errors
	3.3.8	Standard IEEE commands
	3.3.9	Status registers
	3.3.10	Output addressing
	3.3.11	Set value commands
	3.3.12	Measuring commands
	3.3.13	Status commands
	3.3.14	Commands for protective features
	3.3.15	Commands for adjustment limits
	3.3.16	Commands for the tracking mode
	3.3.17	Further commands

