Station météo

Objectif : Construire une station météo de taille réduite (portable) et à faible coût (inférieur à 10€) donnant dans un premier temps des informations en temps réel (température, risque de pluie …).

mesure et affichage d'une pression et d'une température

matériel provisoire :

connections :

code :

#include <TFT.h>  // Arduino LCD library
#include <SPI.h>
#include <Wire.h>
 
// pin definition for the Uno
#define cs   10
#define dc   9
#define rst  8
#define BMP085_ADDRESS 0x77  // I2C address of BMP085
 
 
// create an instance of the library
TFT TFTscreen = TFT(cs, dc, rst);
 
// char array to print to the screen
char tempPrintout[9];
char presPrintout[12];
 
const unsigned char OSS = 0;  // Oversampling Setting
 
// Calibration values
int ac1;
int ac2; 
int ac3; 
unsigned int ac4;
unsigned int ac5;
unsigned int ac6;
int b1; 
int b2;
int mb;
int mc;
int md;
 
// b5 is calculated in bmp085GetTemperature(...), this variable is also used in bmp085GetPressure(...)
// so ...Temperature(...) must be called before ...Pressure(...).
long b5; 
 
short temperature;
long pressure;
 
void setup() {
 
  Wire.begin();
  bmp085Calibration();
 
  // Put this line at the beginning of every sketch that uses the GLCD:
  TFTscreen.begin();
 
  // clear the screen with a black background
  TFTscreen.background(0, 0, 0);
 
  // write the static text to the screen
  // set the font color to white
  TFTscreen.stroke(255, 255, 255);
  // set the font size
  TFTscreen.setTextSize(2);
  // write the text to the top left corner of the screen
  TFTscreen.text("Temperature :\n ", 0, 0);
  TFTscreen.text("Pression :\n ", 0, 40);
  // ste the font size very large for the loop
  TFTscreen.setTextSize(2);
}
 
void loop() {
  // convert the reading to a char array
  String sensorVal = String((float)(temperature*0.1f));
  sensorVal.setCharAt(4, '\r');
  sensorVal.concat(" C");
  String sensorVal2 = String((float)(pressure*0.01f));
  sensorVal2.concat(" hPa");
  sensorVal.toCharArray(tempPrintout, 9);
  sensorVal2.toCharArray(presPrintout, 12);
 
  // set the font color
  TFTscreen.stroke(0, 255, 0);
  // print the sensor value
  TFTscreen.text(tempPrintout, 0, 20);
  TFTscreen.text(presPrintout, 0, 60);
  // wait for a moment
  delay(1000);
 
  temperature = bmp085GetTemperature(bmp085ReadUT());
  pressure = bmp085GetPressure(bmp085ReadUP());
 
  // erase the text you just wrote
  TFTscreen.stroke(0, 0, 0);
  TFTscreen.text(tempPrintout, 0, 20);
  TFTscreen.text(presPrintout, 0, 60);
}
 
void bmp085Calibration()
{
  ac1 = bmp085ReadInt(0xAA);
  ac2 = bmp085ReadInt(0xAC);
  ac3 = bmp085ReadInt(0xAE);
  ac4 = bmp085ReadInt(0xB0);
  ac5 = bmp085ReadInt(0xB2);
  ac6 = bmp085ReadInt(0xB4);
  b1 = bmp085ReadInt(0xB6);
  b2 = bmp085ReadInt(0xB8);
  mb = bmp085ReadInt(0xBA);
  mc = bmp085ReadInt(0xBC);
  md = bmp085ReadInt(0xBE);
}
 
// Calculate temperature given ut.
// Value returned will be in units of 0.1 deg C
short bmp085GetTemperature(unsigned int ut)
{
  long x1, x2;
 
  x1 = (((long)ut - (long)ac6)*(long)ac5) >> 15;
  x2 = ((long)mc << 11)/(x1 + md);
  b5 = x1 + x2;
 
  return ((b5 + 8)>>4);  
}
 
// Calculate pressure given up
// calibration values must be known
// b5 is also required so bmp085GetTemperature(...) must be called first.
// Value returned will be pressure in units of Pa.
long bmp085GetPressure(unsigned long up)
{
  long x1, x2, x3, b3, b6, p;
  unsigned long b4, b7;
 
  b6 = b5 - 4000;
  // Calculate B3
  x1 = (b2 * (b6 * b6)>>12)>>11;
  x2 = (ac2 * b6)>>11;
  x3 = x1 + x2;
  b3 = (((((long)ac1)*4 + x3)<<OSS) + 2)>>2;
 
  // Calculate B4
  x1 = (ac3 * b6)>>13;
  x2 = (b1 * ((b6 * b6)>>12))>>16;
  x3 = ((x1 + x2) + 2)>>2;
  b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;
 
  b7 = ((unsigned long)(up - b3) * (50000>>OSS));
  if (b7 < 0x80000000)
    p = (b7<<1)/b4;
  else
    p = (b7/b4)<<1;
 
  x1 = (p>>8) * (p>>8);
  x1 = (x1 * 3038)>>16;
  x2 = (-7357 * p)>>16;
  p += (x1 + x2 + 3791)>>4;
 
  return p;
}
 
// Read 1 byte from the BMP085 at 'address'
char bmp085Read(unsigned char address)
{
  unsigned char data;
 
  Wire.beginTransmission(BMP085_ADDRESS);
  Wire.write(address);
  Wire.endTransmission();
 
  Wire.requestFrom(BMP085_ADDRESS, 1);
  while(!Wire.available())
    ;
 
  return Wire.read();
}
 
// Read 2 bytes from the BMP085
// First byte will be from 'address'
// Second byte will be from 'address'+1
int bmp085ReadInt(unsigned char address)
{
  unsigned char msb, lsb;
 
  Wire.beginTransmission(BMP085_ADDRESS);
  Wire.write(address);
  Wire.endTransmission();
 
  Wire.requestFrom(BMP085_ADDRESS, 2);
  while(Wire.available()<2)
    ;
  msb = Wire.read();
  lsb = Wire.read();
 
  return (int) msb<<8 | lsb;
}
 
// Read the uncompensated temperature value
unsigned int bmp085ReadUT()
{
  unsigned int ut;
 
  // Write 0x2E into Register 0xF4
  // This requests a temperature reading
  Wire.beginTransmission(BMP085_ADDRESS);
  Wire.write(0xF4);
  Wire.write(0x2E);
  Wire.endTransmission();
 
  // Wait at least 4.5ms
  delay(5);
 
  // Read two bytes from registers 0xF6 and 0xF7
  ut = bmp085ReadInt(0xF6);
  return ut;
}
 
// Read the uncompensated pressure value
unsigned long bmp085ReadUP()
{
  unsigned char msb, lsb, xlsb;
  unsigned long up = 0;
 
  // Write 0x34+(OSS<<6) into register 0xF4
  // Request a pressure reading w/ oversampling setting
  Wire.beginTransmission(BMP085_ADDRESS);
  Wire.write(0xF4);
  Wire.write(0x34 + (OSS<<6));
  Wire.endTransmission();
 
  // Wait for conversion, delay time dependent on OSS
  delay(2 + (3<<OSS));
 
  // Read register 0xF6 (MSB), 0xF7 (LSB), and 0xF8 (XLSB)
  Wire.beginTransmission(BMP085_ADDRESS);
  Wire.write(0xF6);
  Wire.endTransmission();
  Wire.requestFrom(BMP085_ADDRESS, 3);
 
  // Wait for data to become available
  while(Wire.available() < 3)
    ;
  msb = Wire.read();
  lsb = Wire.read();
  xlsb = Wire.read();
 
  up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);
 
  return up;
}