Label vert: La larve mangeuse de plastique
Nom : LE TOQUIN Juliette, SOUFIANI Noha, BOUATIR Fatima Ezzahraa, FERNANDES PEREIRA Alizée
Projet : La larve Galleria Mellonella mangeuse de plastique (PS/PEBD)
Introduction:
Le plastique est une matière qui pollue Ă©normĂ©ment et elle se retrouve bien trop souvent dans l’environnement. Le problème qui se pose est la dĂ©gradation totale ou partielle du plastique. On souhaite donc au travers de notre projet prĂ©senter une nouvelle mĂ©thode de dĂ©gradation du plastique qui est encore en cours de dĂ©veloppement. En effet, des recherches rĂ©centes ont essayĂ© de dĂ©terminer la capacitĂ© de certaines larves Ă dĂ©grader le plastique.Â
Objectif : Notre projet a pour but d’étudier l’efficacité de l'une des larves étudiées, la larve Galleria Mellonella, à dégrader le plastique et de pouvoir comparer les différents résultats. Dans notre cas, nous prendrons deux types de plastiques différents: du polyéthylène basse densité (PEBD) et du polystyrène (PS). En effet, nous cherchons donc à mettre en confrontation nos différentes expériences.
- Etude bibliographique et documentation
- Création d'un poster
- Expérience au Fablab (Biologie-Chimie et Prototypage)
Galleria mellonella (Gm) est une espèce de Lepidoptera dans la famille Pyralidae. Nommée teigne de ruche, c'est une larve que l'on utilise principalement pour la pêche. Son cycle de développement varie de 4 semaines à 6 mois selon les conditions et comprend 4 phases (œuf, larve, nymphe et adulte). C'est dans les alentours de mars qu'elle se développe et atteint son pic autour d’août. Dans le cadre de ce projet, nous allons nous intéresser seulement à son stade de larve.
Expérimentation/Manipulation:
I/ Protocole expérimental: Préparation des tests + témoin
Fablab prototypage:Â
1. Broyer les bouteilles en PEBDÂ
Fablab de biologie:
2. Nettoyer les béchers/erlenmeyers/cristallisoirs à l'éthanol
3. Faire des copeaux de cire d'abeille Ă l'aide d'un Ă©conome/scalpel
4. Émietter le PS en petits morceaux
5. Avant toutes prĂ©parations, peser les rĂ©cipients, le PEBD, le PS, les copeaux de cire, et les larves Ă l'aide d'une balance de pesĂ©eÂ
6. Mises en places des tests/tĂ©moins* :Â
- TĂ©moin: BĂ©cher de 500 ml + 10.85 g de cire + 45 larves Gm (18.855 g)Â
- Test 1: BĂ©cher de 250 ml (90,5968g) + 10.85 g de cire + 33 larves Gm (15.9 g) + 0.7 g de PS
- Test 2: BĂ©cher de 250 ml (118,57g) + 10.85 g de cire + 33 larves Gm (15.5419 g) + 10.8 g de PEBD
- Test 3: Erlenmeyer de 250 ml (134,4g) + 36 larves Gm (16.05g)Â + 17.15 g de PEBD
- Test 4: Erlenmeyer de 250 ml (134,6g) + 44 larves Gm (20,27g)Â + 1 g de PS
- Test 5: Cristallisoir de 795 g + 29 larves Gm (14.6296 g) + 2,6301 g de PEBD (film alimentaire). Le cristallisoir est recouvert par son couvercle en verre.
- Test 6: Cristallisoir de 991.84 g + 10.88 g de cire + 38 larve Gm (18.1318 g) + 2.7634 g de PEBD (film alimentaire). Le cristallisoir est recouvert par son couvercle en verre.
- Test 7: BĂ©cher de 800 ml (243.38 g) + 40 larves (18.547 g) + 1.0735 g de PS
7. Mettre les tests/témoin dans une grosse boîte en plastique que l'on mettra dans une salle close, sans lumière, à 22-23°C.
* rĂ©cipients couverts avec du papier aluminium rempli de petits trousÂ
Matériel nécessaire à la réalisation de nos expériences:
- Fablab de Biologie: 350 larves Gm vivantes, bloc de cire d'abeille, 1 bĂ©cher de 500 ml, 2 bĂ©chers de 250 ml, 2 erlenmeyers de 250 ml, 2 cristallisoirs, papier aluminium alimentaire, une Brucelles en plastique, plaque de polystyrène, 2 bouteilles en PEBD, thermomètre mercure, scalpel, Ă©conomeÂ
- Fablab de Chimie: Accessoire ATR diamant, Ă©thanol de nettoyage
- Fablab prototypage: broyeuse
II/ Observations:Â
Dates, T(°C), | Témoin |
Test 1 |
Test 2 | Test 3 | Test 4 | Test 5 |
Test 6 |
Test 7 |
27/03/2023, 14h40, 22°C |
8 mortes | 8 mortes | 10 mortes | X | X | X | X | X |
29/03/2023, 16h21, 23°C |
6 mortes | 1 morte | 4 mortes | 12 mortes | 9 mortes | X | X | X |
31/03/2023, 9h57, 23°C |
4 mortes* | 5 mortes | 1 morte* |
8 mortes* + perte de PE |
13 mortes* | X | X | X |
03/04/2023, 11h17, 22°C |
2 mortes * |
0 morte |
5 mortes * |
5 mortes | 10 mortes | X | X | X |
05/04/2023, 11h, 22.5°C |
0 morte * |
0 morte * |
0 morte * |
0 mortes | 6 mortes | X | X | X |
07/04/2023, 12h, 24°C |
0 morte |
2 mortes |
0 morte |
1 morte |
0 morte |
X | X | X |
11/04/2023, 13h53, 23°C |
1 morte |
0 morte |
0 morte * |
1 morte | 1 morte | 2 mortes | X | X |
13/04/2023, 10h30, 23°C |
0 morte |
0 morte |
0 morte |
0 morte | 0 morte | 1 morte | 1 morte | 1 morte (+1 cocon) |
14/04/2023, 14h, 22,5°C |
0 morte |
0 morte |
1 morte |
0 morte | 1 morte | 1 morte | 0 morte | 5 mortes |
18/04/2023, 13h20, 23,5°C |
1 morte |
1 morte |
1 morte |
4 mortes |
1 morte |
1 morte |
1 morte |
8 mortes |
- 23/03/2023, 12h, 23°C: mise en place du témoin et des tests 1 et 2 ( arrivée des larves depuis 2j (au frais))
- 27/03/2023, 14h50, 22°C: mise en place des tests 3 et 4 (arrivée jour même)
- 07/04/2023, 12h, 24°C: mise en place du test 5 (arrivée des larves la veille (au frais))
- 11/04/2023, 15h15, 23°C: mise en place des tests 6 et 7 (arrivée des larves le 6/04/23 (au frais))
05/04/2023: diminution forte de la cire
* prĂ©sence de soieÂ
À la fin de l'expérience :
TĂ©moin | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | |
durée | 3 semaines et 1 jour |
3 semaines et 1 jour | 3 semaines et 1 jour | 2 semaines et 6 jours |
2 semaines et 6 jours | 1 semaine |
5 jours |
5 jours |
final |
20 larves vivantes : 6,4352g et un cocon |
17 larves vivantes: 6,1753g |
14 larves vivantes: 4,7291g et un cocon |
5 larves vivantes: 1,6712g |
2 vivantes: 0,7676g et un cocon |
23 vivantes: 10,462g et un cocon |
35 vivantes: 14,966g et un cocon en formation |
23 larves vivantes: 9,647g et un cocon |
III/ Analyses expérimentales
Analyses IR en ATR:
Nom du plastique | PEBD | PS |
Pic(s) caractéristique(s) |
Alcane
|
Alcane
Aromatique
|
- Analyse en début expérience: 31/03/2023
- Analyse en fin expérience: 18/04/2023
EXPLOITATION DES RESULTATS
- Comparaison du spectre IR du PEBD avec les deux spectre "Larves test 2" et celui de "Larves test 3": Nous pouvons observer que les pics caractĂ©ristiques du PEBD ne sont pas prĂ©sents sur les spectres des larves, dont les tests sont composĂ©s de PEBD. Pour illustrer ce propos, nous pouvons relever que les 2 pics de forte intensitĂ© Ă 2800 cm-1 et 2900 cm-1 prĂ©sent sur le spectre IR du PEBD, ne sont pas observable sur sur les spectre du test 2 et 3.Â
- Comparaison du spectre IR du PEBD avec les deux spectre "Larves test 1" et celui de "Larves test 4": la mĂŞme observation que celle pour le PEBD: nous n'observons pas de pics Ă Â
CONCLUSION
Nos expériences ne nous ont pas permis de confirmer la biodégradation du polyéthylène basse densité et du polystyrène par les larves Galleria Mellonella. Ces résultats peuvent avoir été causé par de nombreux paramètres que nous avons du changer comparer à ceux établit dans les articles de références. Ainsi nous avons utilisé de plastiques (PEBD et PS) non stérilisés, effectuer des analyses IR en ATR, effectuer nos tests dans des béchers/erlenmeyers/cristallisoirs. Or eux, dans leurs cas, le plastiques avaient été stérilisés avant son introduction dans les tests, ils ont caractérisé leurs éléments à travers des analyses plus précisent de l'ATR: FTIR, GC-MS ou l'imagerie hyperspectral.
Une autre conclusion que nous pouvons émettre est que le spectre de la larve témoin possède des pics au même endroit que les pics caractéristiques des plastiques, il est possible que la présence de pics des plastiques soit masquée par le spectre de la larve.
BIBLIOGRAPHIE
- Article de ACS Publications, "Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms", 2014.
- Article de The Royal Society Publishing, "Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella", 2020.