Skip to main content

Projet : Régulation d'un système de formulation de colorant

Système automatisé de formulation de couleur à base de colorants alimentaires

Informations

Membres du groupe 4
  • BEN ZAID Doha

  • BOUSMARA Imane

  • CHERGUI Amine Sofiane

  • KOLEV Alexandra

Date de début du projet

Octobre 2025

Date de fin prévue

Janvier 2026

Cursus

Master 2 – Ingénierie Chimique, Sorbonne Université

Contexte

Dans le cadre du projet 823, nous sommes amenés à concevoir un système innovant qui illustre les principes de la digitalisation et de l’automatisation appliqués aux procédés. Pour cela, nous avons choisi de développer un dispositif capable de réaliser automatiquement la formulation de couleurs à partir de colorants alimentaires. Ce projet s’inspire des pratiques industrielles où la précision du dosage, la reproductibilité et le contrôle automatique des paramètres sont essentiels. Grâce à l’utilisation de composants électroniques, mécaniques et programmables, ce travail nous permettra d’aborder concrètement l’intégration d’un système automatisé complet : depuis la conception jusqu’aux tests, en passant par la fabrication au FabLab. Ce Wiki servira de support pour documenter l’évolution de notre prototype, étape par étape, afin de suivre la démarche de conception et les choix techniques réalisés tout au long du projet.

Objectifs 

L’objectif de ce projet est de concevoir et réaliser un système entièrement automatisé permettant de formuler des couleurs à partir de colorants alimentaires grâce à un contrôle précis du débit de chaque composant. Le dispositif doit intégrer une logique de digitalisation et d’automatisation inspirée des procédés industriels de formulation, en utilisant des capteurs, actionneurs et une carte de commande pour assurer un dosage fiable, reproductible et propre des différents colorants.

WhatsApp Image 2025-12-09 à 22.05.19_72123c23.jpgFigure 1 : Une représentation de système de formulation de colorant par l'IA

Matériel

  • 8 réservoirs

  • 3 débitmètres 

  • 4 vannes/pompes + une vanne 

  • Plaque tournante 

  • Capteur niveau 

  • Capteur couleur 

  • Agitateur 

  • Arduino 

  • Colorant 

  • Source d'eau 

  • 5 tuyaux

GRAFCET

CONSTRUCTION

Conception de la tige d’agitation sous OpenSCAD

La tige d’agitation a été entièrement modélisée sous OpenSCAD, ce qui nous a permis de définir un design paramétrique, précis et facilement modifiable. Le modèle intègre un trou axial de 2,1 mm sur toute la longueur pour l’insertion sur l’axe moteur, ainsi qu’une géométrie optimisée pour l’impression 3D. OpenSCAD nous a permis de contrôler précisément les dimensions (longueur de 12 cm, diamètre externe de 6 mm) et d’assurer un positionnement correct de l’hélice au centre de la tige afin de garantir une agitation efficace. Le rendu final est illustré ci-dessous.

image.pngFigure 2 : Modélisation 3D de la tige d’agitation sous OpenSCAD

 

Avancement du projet

Séance 1

Nous avons récupéré l’ensemble du matériel nécessaire au projet et l’avons installé au sein du FabLab. Cette étape nous a permis de prendre en main les composants physiques, de vérifier leur état, leur compatibilité et de nous familiariser avec l’organisation matérielle du système avant de commencer les premières phases de conception et de modélisation.

Nous avons étudié en détail le fonctionnement global du système de formulation. À cette occasion, nous avons construit un premier schéma fonctionnel permettant d’identifier les flux, les connexions entre les modules et la logique générale du processus. Nous avons également défini le rôle de chaque composant (pompes, réservoirs, tige d’agitation, capteurs, électronique…), ce qui a permis de structurer clairement l’architecture du système avant la phase de modélisation.

Lors de cette étape, nous avions également proposé d’intégrer une plaque tournante motorisée permettant de placer automatiquement le bécher correspondant sous la vanne lors de la récupération des couleurs (par exemple faire pivoter la plaque pour aligner le bécher de l’orange, puis celui du vert, etc.). Après discussion avec notre tuteur, il a été conclu qu’il n’était pas possible de trouver un moteur adéquat capable de supporter les récipients et d’assurer les rotations nécessaires avec précision. Nous avons donc décidé que la récupération des couleurs se fera manuellement, tout en conservant une organisation claire du système.

Nous avons réalisé la modélisation du système dans OpenSCAD, incluant la conception détaillée de la tige d’agitation sous forme d’hélice afin d’optimiser le mélange des solutions. La tige a ensuite été imprimée en 3D pour être testée et ajustée. En parallèle, nous avons fixé une planche destinée à servir de support pour les réservoirs contenant les colorants dilués.

Séance 2

Le première version de la tige imprimée en 3D présentait plusieurs défauts au regard de notre projet : 

  • diamètre de la pale trop faible pour permettre un mélange efficace des couleurs
  • longueur de la tige trop courte pour pouvoir attendre le fond du récipient
  • conduit interne de la tige - pour permettre son accrochage au moteur - bouché du fait des contraintes d'impression.

Dans ces conditions, où nous avions finalement une tige d'agitation trop petite et impossible à fixer, nous avons dû en réimprimer une nouvelle, avec des dimensions mises à jour par rapport à la nouvelle disposition du procédé (pas de plaque tournant et un seul grand récipient de récupération). Il a également été nécessaire de faire un compromis entre la solidité de la tige et la quantité de fil utilisée pour l'impression 3D. La solution qui a été trouvée a été de créer des pales très fines mais plus larges. Nous avons également remédié aux problèmes liés au conduit interne en ne l'incluant pas dans le modèle sur OpenSCAD. Ainsi, il nous est possible de forer la tige nous-même, nous permettant une meilleure maîtrise du diamètre interne du conduit.

IMG-20260114-WA0031.jpg                           IMG-20260114-WA0036.jpg

Figure 3 : Première tige - trop petite                                                                                Figure 4 : Tige corrigée

Nous avons également conçu et imprimé le récipient de récupération sur OpenSCAD. Pour cela, nous avions trois contraintes majeures : 

  • être suffisamment grand et opaque pour permettre un mélange homogène, sans débordement et une lecture par le capteur qui ne soit pas faussée par des couleurs parasites extérieures au mélange ;
  • dans le même temps, être suffisamment bas pour pouvoir entrer dans la structure en bois et aluminium, avec son électrovanne associée ;
  • permettre une fixation solide au support, qui permette également le passage des tuyaux d'alimentation et une sortie suffisamment étroite pour contrôler le débit de sortie.

Voici la solution adoptée pour répondre à toutes les contraintes précédemment citées :

IMG-20260114-WA0034.jpg      IMG-20260114-WA0042.jpg

Figure 5 : Récipient principal, de récupération, avec fixations et sortie

Séance 3

Une fois les modèles d'impression récupérés, il s'agit de prévoir le remplissage et la partie alimentation du processus. Pour cela, nous souhaitons fixer trois récipients différents sur le dessus de la structure et de les relier au récipient principal où a lieu le mélange par des tuyaux. Ces trois récipients vont contenir chacun l'un des trois colorants - rouge, bleu et jaune - dilués dans un même volume d'eau. Par ailleurs, les contenants doivent être dans un matériaux suffisamment rigide et solide pour pouvoir être fixées - par de la colle chaude - sur la partie supérieure du support. Nous avons choisi des gobelets réutilisables en plastique transparent opaque.

Dans le même temps, il est essentiel avant cette étape de prévoir un espace de fixation pur le moteur qui permettra de faire tourner la tige d'agitation. En effet, ce moteur ne doit pas simplement être fixé sur la planche de bois, un trou doit être fait, avec un diamètre correspondant au diamètre extérieur de la tige. 

Comme nous avons pu récupérer le récipient de récupération principal, il a également été possible de percer les trous dédiés au passage des tuyaux d'alimentation.

Nous avons également prévu la fixation du capteur de couleur, de sorte qu'il soit le plus proche possible du niveau de liquide, permettant ainsi une mesure la plus précise possible.

Séance 4

L'étape suivante consiste en la prise en main du moteur, avec pour objectif de comprendre et maîtriser le lien entre le voltage fourni et la rotation, avant de fixer définitivement le moteur et la tige sur le support. En effet, jusqu'à présent, toutes les parties sont vissées les unes aux autres, ce qui permet de les retirer ou de les remettre suivant les besoins. Comme le moteur est quant à lui fixé avec de la colle chaude, une fois positionné, il sera impossible de revenir en arrière. C'est pour cela qu'il est crucial de bien maîtriser la rotation et d'être certain de la solidité de la fixation entre le moteur et la tige.

Le moteur se présente sous la forme d'un cylindre avec un axe d'agitation à l'une des extrémités et de deux tiges pour la fixation des câbles : 

IMG-20260114-WA0027.jpg

La première étape a donc été de souder les deux câbles aux tiges de fixation afin de pouvoir ensuite facilement relier le moteur au générateur. Nous avons donc réalisé la soudure au fer chaud, avec un fil d'étain :

IMG-20260114-WA0026.jpg

Après plusieurs essais infructueux avec plusieurs moteurs différents, nous avons finalement pu en faire fonctionner un. Pour cela, nous avons relié les câbles au générateur avec des pinces crocodile. Dès lors, il s'agissait de trouver le lien entre le voltage fourni par le générateur et la vitesse de rotation. En l'absence d'appareils de mesure, nous l'avons estimé nous-même. Plus le voltage augmente, plus la rotation s'accélère : il a donc un lien de proportionnalité directe entre les deux. Empiriquement, nous avons estimé que le voltage optimal à fournir est de 2,0 V : Rotation tige+moteur.mp4.

Enfin, cette valeur optimale trouvée, nous avons fixé la pompe sur le support et la tige sur la pompe. Pour cela, nous avons tout d'abord foré l'intérieur de la tige d'agitation de sorte à avoir un conduit de la taille de la fixation du moteur puis nous avons collé les deux ensemble.

Séance 5 

Comme nous étions satisfaits des résultats obtenus avec la pompe, nous avons pu nous concentrer sur le calibrage du capteur de couleur.

Séance 6

Une fois le capteur calibré et le moteur positionné, l'étape suivante est de faire fonctionner les pompes et de s'en servir pour relier les récipients entre eux. Pour cela, nous avons dû contourner plusieurs difficultés :

  • le diamètre des tuyaux, non adapté à la pompe ;
  • le lien entre les pompes et le générateur ;
  • la force d'aspiration de certaines pompes, qui n'était pas assez puissante.

En effet, nous disposions initialement de tuyaux avec deux diamètres différents - l'un adapté à la pompe et l'autre au contraire, trop petit. Cependant, lors de nos tests de fonctionnement de l'appareil, il s'est avéré que la puissance de la pompe était insuffisante pour aspirer de l'eau à travers un tuyaux avec un tel diamètre. Il a donc fallu fixer les tuyaux de plus petit diamètre sur la pompe, quitte à les déformer, afin de pouvoir poursuivre. 

Plusieurs des pompes fournies n'avaient de plus pas une force d'aspiration suffisante. Ainsi, après avoir asseye de différentes manières de compenser cela - en jouant sur la soudure des câbles, le voltage ou bien l'inclinaison du tuyau - nous nous sommes concertés avec les personnes du FabLab et il s'est avéré que plusieurs de nos pompes étaient en réalité hors-service. 

Une fois ces difficultés contournées, nous avons pu souder les câbles sur toutes les pompes - en veillant à ce qu'aucun défaut de soudure ne vienne se glisser lors de cette étape, au risque de diminuer le passage du courant - et les tester toutes une par une avec le générateur.